Patient Dosimetry Audit for Establishing Local Diagnostic Reference Levels for Nuclear Medicine CT

CT Users Group Meeting 20th October 2016, Manchester Conference Centre

> Ngonidzashe Michael Katsidzira Matthew Gardner

RRPPS University Hospitals Birmingham NHS Foundation Trust

University Hospitals NHS Birmingham

Contents

- Background
- Methods
- Results
- Discussions
- Conclusion
- Acknowledgements
- References

NB: This work will be submitted for publication imminently

Background

- Diagnostic Reference Levels (DRLs) provide a useful tool for monitoring patient doses
- It is a legislative requirement to establish Local DRLs (LDRLs) (UK¹ and Europe²)
- DRLs (Local and National) are well established in diagnostic radiology but not a common practice in Nuclear Medicine (NM) CT
- NDRLs are available for NM in terms of administered activity³ (no information on CT component)
- Previous work has been carried out to establish DRL for PET/CT^{4,5}

Table 1: IPEM Working Party Proposed NDRLs⁶ for common NMCTexaminations

		Proposed NDRLs		
Examination Type	CT Purpose	CTDIvol (mGy)	DLP (mGycm)	
PET half body	Localisation	4.3	400	
Parathyroid	Localisation	5.6	170	
Bone	Localisation	5.6	180	
Octreotide/MIBG	Localisation	5.4	240	
Thyroid post ablation	Localisation	5.9	210	
SPECT/PET cardiac	Attenuation Correction	2.0	34	

- The aim of this work was to establish a system for NMCT in terms of
 - ✓ patient dosimetry audit
 - ✓ setting up LDRLs
- Patient dosimetry for NMCT presented a number of difficulties which may not be encountered for diagnostic radiology CT

- For diagnostic radiology CT, data are divided according to body region only (e.g. Lumbar Spine)
- For NMCT, data were divided according to ;
 - ✓ examination type (e.g. Bone)
 - ✓ body region
 - \checkmark dose modes
- Obtaining sufficient patient numbers proved challenging for NMCT due to the above data division

Table 2: CT dose modes developed for Nuclear Medicine at the Queen Elizabeth

 Hospital Birmingham

Dose Mode	CT Purpose	kV	Quality Reference mAs*
Low	Attenuation Correction	130	10-16
Moderate	Localisation	130	40
Standard	Diagnostic CT	130	150
Metal	Patients with Orthopaedic Implants	130	330

*values are approximate as actual value depends on body region

Methods

- Data have been collected from examinations performed on
 - ✓ Two SPECT/CT scanners (Siemens Symbia T16 and T)
 - ✓ PET/CT scanner (Siemens Biograph mCT Flow)
- Data collection periods
 - ✓ SPECT/CT (November 2014 to July 2016)
 - ✓ PET/CT (April to August 2016)
- Examination data capture
 - ✓ Computed Radiological Information System (CRIS)
 - ✓ Paper records (manually recorded by NM Technologists)

Methods (cont...)

- CRIS downloads provided information on the
 - \checkmark examination type
 - \checkmark date of birth
 - \checkmark date of examination
 - ✓ Dose Length Product (DLP)
- CRIS provided sufficient information to perform dose analysis for
 - ✓ PET/CT examinations
 - ✓ Cardiac SPECT/CT examinations

(as these are not associated with different dose modes and body regions)

Methods (cont..)

- The mean and standard deviation of DLPs for common NMCT examinations were then calculated
- Data were subjectively assessed and any obvious outliers removed before analysis
- Paediatric data were also identified and removed before analysis
- Only examinations with 10, or more, patients were analysed
- LDRLs will be set based on the mean DLP

Methods (cont...)

- Paper records provided additional information for SPECT/CT (excluding Cardiac) examinations
 - ✓ body region
 - \checkmark dose mode
 - ✓ scanner
- The CRIS data and paper records were matched using the patient identification number and examination date found on both records
- For common SPECT/CT examinations, data were divided in terms of the *examination type, body region, scanner and dose mode*

Results

Table 3 : Comparison between mean DLP and IPEM WP proposed NDRLs⁶ for Bone SPECT/CT examinations for different body regions and dose modes

	Body Region	Scanner	No. of Patients	Dose Mode	DLP (mGy cm)		
Examination Type					Mean DLP	Standard Deviation	Proposed NDRLs
	Pelvis	Т	15	Moderate	105	40	180
	T-Spine	Т	13	Moderate	133	40	180
	T-Spine/L-						
	Spine	Т	15	Moderate	124	26	180
	L-Spine	Т	47	Moderate	107	33	180
	L-Spine	T16	24	Moderate	170	70	180
	L-Spine	T16	33	Standard	634	226	
Dono	L-Spine	T16	11	Metal	1045	426	
Bone	Feet/Ankles	Т	10	Standard	153	44	
	Feet/Ankles	T16	32	Standard	221	39	
	Pelvis	T16	11	Standard	558	111	
	Pelvis	T16	34	Metal	1359	322	
	Knees	T16	10	Standard	230	130	
	Knees	T16	111	Metal	913	285	
	T-Spine/L-						
	Spine	T16	24	Standard	704	306	

Moderate - Localisation, Standard - Diagnostic CT, Metal - Patient with orthopaedic implants

Results (cont..)

 Table 4 : Comparison between mean DLP and proposed NDRLs⁶ for different examination types

 body region and dose modes

Examination Type	Body Region	Scanner	No. of Patients	Dose Mode	DLP (mGy cm)		
					Mean DLP	Standard Deviation	Proposed NDRLs
Parathyroid	Neck	Т	19	Moderate	66	20	170
	Neck	T16	42	Moderate	120	36	170
Octreotide	Abdomen	T16	15	Moderate	280	97	240
	Abdo/Pelvis	T16	14	Moderate	204	109	240
	Chest/Abdo/Pelvis	T16	32	Moderate	377	164	240
	Head/Chest/Abdo/Pelvis	T16	10	Moderate	373	151	240
Cardiac	Heart	T16	2889	Low	34	1	34
PET/CT	Whole/half body	PET	1192	Moderate	346	164	400*

*Based on half body scan

Low - Attenuation Correction, Moderate - Localisation

Results (cont..)

Figure 1: Mean Dose Length Product (DLP) data for Bone SPECT/CT Lumbar Spine examinations in the four dose modes.

Discussion

- The proposed NDRLs⁶ specify the examination type and the scan purpose, but the details of the body region are not given
- Only Octreotide scans have mean DLP greater than the proposed NDRL
 - ✓ low numbers, patient height/weight
- T16 scanner tends to give higher DLPs than the T scanner
 - ✓ further optimisation of doses required
 - ✓ technology difference (relative tube capabilities and detector sizes)
- **Figure 1** clearly shows the importance of dividing the data according to dose mode
- Mean DLP PET/CT (half and whole body) was less than proposed NDRLs⁶ (based on the half body only)

Delivering the best in care

University Hospitals MHS Birmingham

Conclusion

- Patient dosimetry for NMCT presents a number of difficulties which may not be encountered for Diagnostic Radiology CT
 - ✓ Dependence on paper records (CRIS does not provide all information)
 - Limited number of examinations available due to frequency of examinations and division of data
- Further improvements are planned to capture more data electronically through the CRIS system
- This system provides a useful basis for setting up LDRLs and hence a baseline for attempts at optimisation of NMCT doses

References

- 1) The Ionising Radiation (Medical Exposure) Regulations 2000. SI 2000/1059. London: The Stationery Office; 2000
- European Community. Council Directive 2013/59/EURATOM. Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation. *Off J Eur Union*. 2013 [Cited 29 September 2016]; Available from: <u>http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF</u>
- ARSAC. Notes for Guidance on the Clinical Administration of Radiopharmaceuticals and Use of Sealed Radioactive Sources. Administration of Radioactive Substances Advisory Committee. 2016.
- 4) Etard C, Celier D, Roch P, Aubert B. National survey of patient doses from whole-body FDG PET-CT examinations in France in 2011, *Radiat Prot Dosimetry* 2012; **152**: 334-338. doi: <u>http://dx.doi.org/10.1093/rpd/ncs066</u>
- 5) Jallow N, Christian P, Sunderland J, Graham M, Hoffman JM, Nye JA. Diagnostic Reference Levels of CT Radiation Dose in Whole-Body PET/CT. *J Nucl Med* 2016; 57: 238-241. doi: http://dx.doi.org/10.2967/jnumed.115.160465
- 6) Bebbington N, Burniston M, Edyvean S, Fraser L, Julyan P, Parkar N, et al. UK national reference doses for CT scans performed in hybrid imaging studies. *J Nucl Med* 2016; **57**; no. supplement 2 **594**. Available from: http://jnm.snmjournals.org/content/57/supplement_2/594?legid=jnumed%3B57%2Fsupplement_2%2F594&relatedurls=yes&trendmd-shared=0

Acknowledgements

- Erin Ross, Principal Physicist, Nuclear Medicine Department
- Elizabeth Larkin, Consultant Clinical Scientist, RRPPS
- Nuclear Medicine technologists at QEHB (particularly Samantha Holt and Kenneth Parker)
- Sophie Bissel, Trainee Clinical Scientist, Nuclear Medicine Department

Thank you for your attention Any Questions?

NB: This work will be submitted for publication imminently

Contact Information

Ngonidzashe Michael Katsidzira NgonidzasheMichael.Katsidzira@uhb.nhs.uk

Matthew Gardner Matthew.Gardner@uhb.nhs.uk

O Delivering the best in care

